Canonical coin systems

Jakub Cisło

Jagiellonian University

jakub@cislo.net.pl

April 14, 2016

Overview

- Brief description of the problem
 - Definitions
 - Properties of greedy decomposition
- 2 Smallest counterexample characterization
 - Properties of subvectors
 - M(w) vs $G(c_{i-1}-1)$
- 3 Polynomial algorithm for checking canonicity

Denominations

Denominations

14

Denominations

14

Greedy

Denominations

14

Greedy

Optimal

Definitions

$$C = (c_1, c_2, ..., c_n)$$

where $c_1 > c_2 > ... > c_n$ are denominations

Decomposition of w'

vector V satisfying $V \cdot C = w$ (where \cdot is scalar product)

G(w)

greedy decomposition of w

M(w)

optimal decomposition of w (minimalize $|M(w)| = M(w) \cdot (1,...,1)$)

Properties of greedy decomposition

$G(\cdot)$ is monotonic

$$x \le y \implies G(x) \le G(y)$$

G(w) is the greatest lexicographical representation of w

$$\forall_{U:U\cdot C=w}U\leq G(w)$$

Properties of subvectors

Definition

V is greedy if and only if $V = G(V \cdot C)$

Definition

V is minimal if and only if $V = M(V \cdot C)$

Lemma

- a) If $U \subseteq V$ and V is greedy, then U is greedy.
- b) If $U \subseteq V$ and V is minimal, then U is minimal.

M(w) vs $G(c_{i-1} - 1)$

Theorem

Let w be the smallest counter example, i - the first index of nonzero value in M(w), j - the last one. Then M(w) is identical with $G(c_{i-1}-1)$ on positions from 1 to j-1-th. It's one greater on j-th position. The remaining entries are all zeros.

7 / 9

Jakub Cisło (UJ) Canonical coin system April 14, 2016

$O(n^2)$ candidates

 $O(n^2)$ candidates every checked in O(n)

$$O(n^2)$$
 candidates
every checked in $O(n)$
= $O(n^3)$

Thank you