JAGIELLONIAN UNIVERSITY
FAcULTY OF MATHEMATICS AND COMPUTER SCIENCE

THEORETICAL COMPUTER SCIENCE

BACHELOR’S THESIS

C++4 Concepts - complete overview

Jakub Cisto
Album number: 1115689

Supervisor:
dr hab. Marcin Kozik

Krakow, 2017

Contents

i

What are the concepts?|

The very beginning (1994)|

[2.1 Constraints by inheritance| L.
2.2 Constraints by usage| Lo

Texas Proposal (2003)|

3.1 The base-class approach|
[3.2 The function-match approach|
3.3 The usage-pattern approach|
B.3.1 Additional features o oL
[3.3.2 Implicit modeling|.
[3.4 'The pseudo-signature approach|

[4

Concepts’ design aims (2003)|

Indiana Proposal (2005)|

5.3 Explicit modelingf. Lo
[.3.1 Input and Forward Iterators issuel

Revised Texas Proposal (2005)|

6.1 Negative assertions| L

7

ConceptGCC and Revised Indiana Proposal (2005)|

(8

Compromise (2006)|

8.1 Concept definition|
8.2 Constraining functions and classes|
8.3 Explicit and implicit modelingl

Simplification (2009)|

9.1 Explicit refinement| 0oL

0 \/ ol

(10 Concepts Lite (2013)|

10.1 ntax] e
[10.2 Caller-site checkingl

[10.3.1 Concept-based overloading]
[10.4 Logical operations in concepts|.

[10.4.1 Various syntax of constraining template arguments|

[10.5 Usage-patterns again|
[10.6 Implicit modeling again|

[11 Concepts TS (2015)|

Qo

10
10
10
10
11
12
12

12

13
13
14
15
16

17
18

18

19
19
19
20
20

21
21
21

22
22
22
23
23
24
24
25
25

26

M2 C++17 (2016)|

(13 Conclusions|
[13.1 Project development| .
[13.2 Future of the concepts|

Introduction

An idea of constraining templates’ arguments goes back to 1990s. Since that time the
concepts were discussed and developed but they are still absent in the current standard. In
this paper I would like to introduce the concepts, take a tour through the history and try
to explain why they have not been fully implemented yet, despite their quite easy definition
and valuable application.

Section [I] presents a concepts’ main idea and a reason why they are desired. The history
of the concepts starts in section [2| followed by the Texas Proposal (the first study concerning
the concepts) (section . Main goals of the concepts are described in section 4l They are
followed by the Indiana Proposal, section [5| (an alternative to the Texas Proposal). Two next
sections [6] and [7] describe revisions of the Texas Proposal and the Indiana Proposal. After the
revisions, the results of the meeting at Adobe Systems are presented in section[8] A suggested
simplification of the design is the subject of section [9] Section explains Concepts Lite.
Section [L1]is devoted to formalization of the Concepts Lite in Technical Specification. Section
concerns presence of the Concepts Lite in C++17 standard. Section [13| summarizes the
history of the development and contains considerations about future of the concepts.

Enjoy your reading!

N

N

3

1 What are the concepts?

Templates are one of the most valuable facilities in C++4. They provide a flexible approach
to generic programming and do not imply any runtime overhead. The templates are used
very often and became a crucial part of the language. However, they suffer from a number
of problems. Let us think about generic function for minimum.

template <typename T>
T mymin(T a, T b) {

return (a<b?a:b);
}

The function seems to be correct, unfortunately, there is a problem with this code. There
is a silent assumption that type is comparable. If the function is called on a complex number:

#include <complex>

int main() {
std :: complex<float> a {1,2};
std :: complex<float> b {3,4};
std :: complex<float> ¢ = mymin(a, b);

}

the following error message will be generated[]

In instantiation of ’'T mymin(T, T) [with T = std::complex<float >]’:
error: no match for ’operator<’
(operand types are ’std::complex<float>’ and ’std::complex<float>")
return (a<b?a:b);
In file included
from /usr/include/c++4+/6.3.1/bits/ios_base.h:46:0,
from /usr/include/c++/6.3.1/i0s:42,
from /usr/include/c++/6.3.1/istream:38,
from /usr/include/c++/6.3.1/sstream:38,
from /usr/include/c++/6.3.1/complex:45,
from code.cpp:6:
/usr/include/c++/6.3.1/system_error:274:3: note: candidate:
bool std::operator <(const std::error_condition&, const std::error_condition&)
operator <(const error_condition& __lhs ,

[120 lines more...]

The error is caused by an instantiation of a template with a type which does not provide
the appropriate operator. The message is long and complicated because the compiler does
not know the template requirements. The concepts are supposed, among other things, to fix
the problem of intricate error messages.

template <typename T>

concept bool Comparable = requires(T a, T b) {
{a<b} —> bool;

};

1This output was generated by GCC 7.1 without concepts support.

6

-~

template <Comparable T>
T mymin(T a, T b) {
return (a<b?a:b);

The Comparable concept requires the < operator which returns boolean-convertible ValueE]
The function template mymin() expects a Comparable type as its template argument (notice
Comparable instead of typename). As a result, the error message is more much easier to
understand Pl

In function ’int main()’:

error: cannot call function ’'T mymin(T, T) [with T = std::complex<float >]’
std :: complex<float> ¢ = mymin(a, b);
note: constraints not satisfied
T mymin(T a, T b) {
note: within ’template<class T> concept const bool Comparable<T>
[with T = std:: complex<float >]’
concept bool Comparable = requires(T a, T b) {
note: with ’const std::complex<float> a’
note: with ’const std::complex<float> b’
note: the required expression ’(a < b)’ would be ill —formed

A concept is a set of constraints on the arguments of templates which are enforced by the
compiler. This leads to shorter and more precise error messages, but additional functionality
can be accomplished with this mechanism as well (to be described later).

2 The very beginning (1994)

In 1994 Bjarne Stroustrup in his book [Str94] introduced an idea of constraining templates.
He proposed two approaches.

2.1 Constraints by inheritance

In this approach, requirements on the template parameters were expressed by inheritance.

template <typename T>
struct Comparable {
virtual bool operator<(T) = 0;

}s

template <typename T : Comparable>
T mymin(T a, T b) {
return (a<b?a:b);

struct X : public Comparable<X> {
bool operator<(X) override { return true; }

2From a design perspective, a comparable type should implement more operators (e.g., >, <=, ==). They
are skipped to keep examples short and simple. Similar simplifications will by applied in the whole document.
3This output was generated by GCC 7.1 with experimental concepts support (used —fconcepts switch).

}s

int main() {
} X x = mymin(X(), X());

The approach reused the inheritance mechanism and there was only one new syntactic
element to be introduced. This solution would be easy to implement, moreover a similar
solutions are currently used in programming languages like C# and Java. The approach
had three drawbacks. First, it mixed different levels of programming: concepts and abstract
classes - they were undistinguishable. Second, built-in types were not in hierarchy of classes
and needed a workaround. Last, the requirements on functions were not flexible enough: the
functions required exactly the same signature. E.g, if a concept required a function with
an argument passed by constant reference but a class implemented that function with the
argument passed by value then the concept would not be satisfied.

2.2 Constraints by usage

The second approach was based on usage cases. It was possible to write a function assuring
all requirements on the template parameter:

template <typename T>
class MyClass {
void comparable_constraints (T a, T b) {
bool r = a<b;
}

}s

struct X {
bool operator<(X) { return true; }

}s

int main() {
MyClass<X> myClass;
}

If the comparable_constraints() function (constraining function) compiled correctly
after instantiation then all the expressions in its body were supposed to be valid. Therefore, it
was enough to write simple expressions with all the required operations in order to ensure that
T satisfied the concept. In the example, the concept needs the < operator so the expression
bool r = a<b is written.

In contrast to the constraints by inheritance, the constraints by usage were applicable
only to class templates’ arguments. Moreover, they required only one change in a compiler:
compiling constraining functions before other functions. In case of failure, the process of
compilation should be stopped and the appropriate message ought to be reported.

In the old versions of compilers this approach was almost working because they compiled
all the functions inside a class template. The current versions of the compilers compile only
the code which is necessary so the unused constraining functions are not compiled and the
concepts are not checked.

3 Texas Proposal (2003)

The idea of constraining template continued evolving. In 2003 Bjarne Stroustrup pub-
lished another paper [N1510] which presented four approaches.

3.1 The base-class approach

The base-class approach was reminiscent of inheritance-based solution (see . Strous-
trup noticed that such a solution had to impose runtime overhead as the function calls had
to be realized by virtual function tables (i.e. by a true inheritance). On the other hand, the
syntax was very simple and easy to understand.

3.2 The function-match approach

The function-match approach was a refinement of the base-class approach. A concept
required functions with the same signatures as stated but the calls would not be realized by
virtual functions. The inheritance was omitted.

match Comparable {
bool operator <(Comparable) ;

}s

template <typename T match Comparable>
T mymin(T a, T b) {
return (a<b?a:b);

}

However, there was still the same problem: very strict requirements. A free-standing
function and a inside-class function, arguments passed by value or by (constant) reference -
all of them could express almost the same but only one of them satisfied the concept.

3.3 The usage-pattern approach

The usage-pattern approach, later called the Texas Proposal, was very similar to the
constraints by usage (see [2.2). The author suggested the following syntax.

concept Comparable {
constraints (Comparable a, Comparable b) {
bool r = a<b;
}

}s

template <Comparable T>
T mymin(T a, T b) {
return (a<b?a:b);

}

The constraining clause consisted of the constraints keyword followed by parameter list
and the body. The body contained expressions: requirements on the constrained type.

The constraints clause was similar to a function definition. However, it did not need any
constructor for its arguments itself. Its parameter list introduced new variables of given types,

10

N

in contrast to a parameter list of a normal function which required copy/move constructors
of the arguments’ types.

3.3.1 Additional features

The Texas Proposal included some additional features.

Concept parametrization: In order to express a concept for more compound types,
the parametrized concepts were suggested. For example, std: :vector and std::list could
be treated as collections of elements of the same type for each type. The concept for this
purpose might be created as follows.

template <typename Item>
concept Collection {
constraints(Collection<Item> c, Item item) {
c.push_back (item) ;
c.pop-back();

/]
}s

Concept inheritance: A derived concept could be created with the inheritance syntax.
Then the derived concept had the requirements from the base concept as well as additional
ones.

concept EqualityComparable {
constraints (EqualityComparable a, EqualityComparable b) {
bool r = a=—b;
}

}s

concept Comparable : EqualityComparable {
constraints (Comparable a, Comparable b) {
bool r = a<b;

}
}s

Concept composition: To avoid unnecessary definitions of concepts, the composition
syntax was proposed.

template <(Cl && C2) T> class Al {};
template <(Cl1 || C2) T> class A2 {};
template <(Cl && !C2) T> class A3 {};

Concept-based overloading: For a few templates with the same name, the proper one
was chosen based on the satisfied concepts on the call site. Due to concept-based overloading,
optimizations and special cases without runtime if-conditions were possible.

template<RandomAccesslterator Iter>
void advance(Iter iter, int n) { /x O(1) algorithm x/ }

template<Iterator Iter>
void advance(Iter iter , int n) { /« O(n) algorithm =/ }

11

int main() {
std:: list<int> 1 {1,2,3,4};
std ::vector<int> v {1,2,3,4};
auto lit = 1.begin();
auto vit = v.begin();
advance (lit , 2); // uses advance() with Iterator
advance(vit, 2); // uses advance() with RandomAccesslterator

3.3.2 Implicit modeling

Implicit modeling was a vital aspect of the Texas Proposal (in contrast to further pro-
posal’s explicit modeling): every class which had functions required by a concept just satisfied
that concept. No special declarations were necessary, classes were automatically matched to
concepts.

3.4 The pseudo-signature approach

At the end of the document, Stroustrup briefly presented the pseudo-signature approach.
It expressed the same set of requirements as the usage-pattern approach but differed in syntax.
An example of pseudo-signatures is shown in the listing below.

concept Comparable {
<(Comparable, Comparable) —> bool

}s

concept Swappable {
swap (Swappable, Swappable) —> void

}s

A pseudo-signature concept was satisfied by functions having various signatures. For
instance, a class with a < operator taking its arguments by value and a class with the oper-
ator taking its arguments by reference would satisfy the Comparable concept. The pseudo-
signature approach was not carefully analyzed in Stroustrup’s document.

4 Concepts’ design aims (2003)

Another document [N1522] was published the same day as [N1510]. The authors, Strous-
trup and Dos Reis, attempted to approach the concept problem from a different angle. They
considered the aims of the concepts’ design.

Flexibility: In object oriented system, an exact agreement between creator of a function
and user of that function is necessary - they have to choose common interface and specify
the operations. Introducing the concepts was supposed to amend the templates’ duck typing
by a formalization. However, that formalization should not be as strict as in OOP model.

Modular type checking: The definition of a template should not rely on actual sub-
stituted types but use the concept declaration instead. Similarly the usage of the template
ought to depend only on the concept.

12

More precise error messages: Before the concepts incorrect instantiation’s error mes-
sages were complicated and unclear if the problem was deeply nested. The concepts were
supposed to fix that. Improper use of a constrained template should be identified by the
template argument failing the concept, on the other hand, the definition of the template was
supposed to be checked: the template was allowed to use only the operations guaranteed by
the concept.

Concept-based overloading: The concepts had to allow overloading. Among matching
templates one could be chosen based on the concepts satisfied by a type argument.

No run-time overhead: Performance of the constrained templates had to be compara-
ble to unconstrained ones.

Simplicity in implementation: It was difficult to implement the first templates in
compilers. The concepts’ implementation were expected to not be as problematic as the
templates’ one.

Backward compatibility: The concepts’ design had to introduce some new keywords
and constructions. However, it was supposed to generate a small amount of backward con-
flicts.

Separate compilation: The unconstrained templates generated code after substituting
actual types so it was impossible to compile template code without providing the types. The
concepts gave hope that it would be possible to compile constrained templates independently
of their usage.

Expressing the requirements: The Standard Template Library’s documentation con-
tained the requirements on the arguments of the templates. The concepts were expected to
be a formalized way of expressing those requirements (both syntactic and semantic).

These were the main goals for the concepts. It was predictable that achieving all of
them simultaneously was impossible. A conflict between the separate compilation and the
concept-based overloading, which appeared during the studies, confirmed that.

5 Indiana Proposal (2005)

In 2005 other research group consisting of Jeremy Siek, Douglas Gregor, Ronald Garcial,
Jeremiah Willcock, Jaakko Jérvi and Andrew Lumsdaine published [N1758]. They proposed
an extension to the pseudo-signature approach by Stroustrup and called it the Indiana Pro-
posal.

5.1 Syntax

An example of the syntax is presented below.

template <typeid T>
concept Comparable {
bool operator<(T, T);

}s

template <typeid T>
where {Comparable<T>}

T mymin(T a, T b) {
return (a<b?a:b);

}

13

The approach was similar to the function-match but less strict.

“In a simple signatures approach, a type T would have to have functions that match those
signatures exactly. A pseudo-signature approach, on the other hand, treats these declarations
more loosely. For instance, the declaration of operator < requires the existence of a < opera-
tor, either built in, as a free function, or as a member function, that can be passed two values
of type T and returns a value convertible to bool.” ([N1758])

“The pseudo-signature may be satisfied by a function in the enclosing scope of the model
declaration. Function lookup is performed as for a function call expression whose function
and arguments are given by the pseudo-signature. A forwarding function whose signature
exactly matches the pseudo-signature is generated by the C++ implementation, and the body
of this function consists of a function call to the result of the function lookup. The return type
of the found function shall be convertible to the return type of the pseudo-signature, otherwise
a diagnostic is required.” ([N1758])

It is worth noting that a template parameter was declared by the typeid keyword. The
authors suggested such reuse of this keyword to express the difference between constrained
and unconstrained parameters.

5.2 Additional features

Some additional features were introduced as well:
Concept inheritance (called concept refinement): Inheritance of concepts was pos-
sible. A derived concept inherited requirements from the base concept.

template <typeid T>
concept EqualityComparable {
bool operator==(T, T);

}s

template <typeid T>
concept Comparable : EqualityComparable<T> {
bool operator<(T, T);

}s

Concept-based overloading: In this proposal, concept-based overloading was allowed
too. While considering the overloads, only templates with concepts satisfied by the type
parameter were taken into account. Among them, a template with the most specific (in
terms of the inheritance) concepts was chosenﬁ

template<typeid Iter> where {RandomAccesslterator<Iter >}
void advance(Iter iter , int n) { /« O(1l) algorithm =/ }

template<typeid Iter> where {Iterator<Iter >}
void advance(Iter iter, int n) { /% O(n) algorithm %/ }

int main() {
std:: list<int> 1 {1,2,3,4};
std :: vector<int> v {1,2,3,4};
auto lit = l.begin();

“In the example, it was assumed that modeling clauses were part of the STL and they were included from
the library. See for more information about the modeling syntax.

14

N}

N]

auto vit = v.begin();
advance(lit , 2); // uses advance() with Iterator
advance(vit, 2); // uses advance() with RandomAccesslterator

Associated types: Concepts could require type definitions inside classes. For example,
iterators were supposed to have type of the value defined. An example below illustrates this.

template <typeid T>
concept Iterator {
typename value_type;

/...
}s

Function definition inside a concept: A concept could define other functions based on
provided ones. For instance, the EqualityComparable concept could define the != operator
based on the == operator as follows.

template <typeid T>
concept EqualityComparable {

bool operator==(T, T);

bool operator!=(T a, T b) { return !(a=b); }
};

If a class modeling the EqualityComparable concept contained the != operator then its
implementation was taken, otherwise the concept’s one was used. This was supposed to
decrease the amount of code written to satisfied.

5.3 Explicit modeling

In contrast to the Texas Proposal, the Indiana Proposal assumed explicit modeling. Every
type (even built-in) needed explicit statement in order to assure that it satisfied a concept.
The explicit modeling was declared using model keyword.

struct X {
bool operator<(X) { return true; }
}s

model Comparable<X> { };

When a compiler encountered the model statement, it checked if the type had all the
operations required by the concept. If the check was successful then the type could be used
wherever the concept constrained the argument. Otherwise, a precise error message was
generated.

A more compound example was modeling with a function definition. Even if a class did
not have a proper function, it could be added using model syntax in order to satisfy a concept.
Then, the function was treated as it was declared inside a class.

struct Y {
int v;
}

15

5 |model Comparable<Y> {
6 bool operator<(Y y) { return v < y.v; }

7|}

The reason for explicit modeling was a mismatch issue described in the next section.

5.3.1 Input and Forward Iterators issue

Iterators from hierarchy of concepts are presented in the diagram. Each concept is im-
plemented as a refinement of its predecessor.

Iterator

/]\

InputlIterator

/]\

ForwardIterator

/]\

BidirectionalIterator

/]\

RandomAccessIterator

Concepts InputIterator and ForwardIterator offer the same set of operations (from
syntactical point of view)ﬁ but InputIterator allows to view the sequence only once. There-
fore, in implicit modeling every type satisfies either both concepts or none of them. Let us con-
sider a template function overloaded for the both concepts. The overload for ForwardIterator
will always be chosen over the overload for InputIterator, because the ForwardIterator
concept is more specific. That may lead to runtime errors. It was Texas Proposal’s issue.

. |concept Inputlterator { /+ ... %/ };
concept ForwardIterator : Inputlterator { /x ... %/ };

V)

. |template <Inputlterator Iter>
5 |void f(Iter iter) { /x ... %/ }

7 |template <ForwardIterator Iter>
s |void f(Iter iter) { /+ ... =%/ }

0 |template <Inputlterator Iter>
1 |void g(Iter iter) {

12 /] .

13 f(iter);

14 /] ..

15 }

7 |class MyForwardIterator { /« ... x/ }
s | class Mylnputlterator { /+ ... %/ }

5 A copy constructor could be considered as a difference between those iterators - InputIterator should not
have been copied (moving was more suitable operation). However, because of historical reasons, InputIterator
have to provide the copy constructor.

16

int main() {
MyForwardIterator forwardIterator;
MyInputlterator inputlterator;

g(forwardIterator); // uses f() with ForwardlIterator
g(inputlterator); // uses f() with Forwardlterator too!

The explicit modeling and the model syntax were solution to the mismatch problem.

template <typeid Iter>
concept Inputlterator { /* ... =%/ };

template< typeid Iter>
concept ForwardIterator : Inputlterator<Iter> { /x

template <typeid Iter>
where {Inputlterator<Iter >}
void f(Iter iter) { /« ... %/ }

template <typeid Iter>
where {ForwardIterator<Iter >}
void f(Iter iter) { /+ ... %/ }

template <typeid Iter>

where {Inputlterator<Iter >}
void g(Iter iter) {

f(iter);
}

class MyForwardIterator { /« ... =%/ }
class MylInputlterator { /+« ... x/ }

model ForwardItertor<MyForwardIterator> {}
model Inputltertor <MyInputlterator> {}

int main() {
MyForwardIterator forwardIterator;
MyInputlterator inputlterator;

g(forwardIterator); // uses f() with Forwardlterator

g(inputlterator); // uses f() with Inputlterator

6 Revised Texas Proposal (2005)

After publication of the Indiana Proposal, the Texas proposal was revised [N1782]. An

example from [N1782] illustrates the changes.

17

concept ForwardIterator<class Iter> {

Iter p; // uninitialized

Iter q =p; // copy initialization
P = q; // assignment

Iter& q = ++p; // can pre—increment ,

// result usable as an Iter&

const Iter& cq = p++; // can post—increment ,
// result convertible to Iter
bool bl = (p=—q); // equality comparisons

// result convertible to bool
bool b2 = (p!=q);
Value_type Iter ::value_type; // Iter has a member type,

// value_type which is

// a Value_type

Iter :: value_type v = xp; // *p is assignable to
// Iter’s value type
xp = V; // Iter’s value type is

// assignable to *p

}s

“Here, Iter p; introduces the name p of type Iter for us to use when expressing concept
rules. It does not state that an Iter require a default constructor. That would be expressed
as ITter(); or Iter p = Iter();” ([N1782])

6.1 Negative assertions

In order to solve the mismatch problem (see , the Texas team suggested so called
negative assertions. The syntax was as follows.

static_assert !Forwardlterator<Mylterator >;

This statement meant that MyIterator could not be matched to the ForwardIterator
concept. Such statements were sufficient for problematic classes and concepts.

7 ConceptGCC and Revised Indiana Proposal (2005)

In August of 2005 two documents were published: [N1848|] and [N1849]. The first one was
a description of ConceptGCC. ConceptGCC was a branch of GCC compiler with support for
the concepts based on Indiana Proposal from |[N1849]. This prototype was significant for the
Indiana Proposal because it proved that the proposal was feasible.

The revision of the Indiana Proposal removed the typeid keyword in context of the
concepts. It was replaced back with the standard typename. The concept definition and
usage looked as in the listing.

template <typename T>
concept Comparable {
bool operator<(T, T);

}s

18

template <typename T>
where {Comparable<T>}

T mymin(T a, T b) {
return (a<b?a:b);

}

8 Compromise (2006)

In 2006 the teams responsible for Texas and Indiana proposals met at Adobe Systems and
a compromise was reached ([Siel0]) Soon after the meeting Indiana and Texas teams created
a common design document |[Gre+06| and published proposals [N2042; N2081| which were
well received by the WG21 committedﬂ The main points from [N2042| are presented below.

8.1 Concept definition

Both usage-patterns and pseudo-signatures were equivalent in semantics; all the require-
ments could be translated from the first approach to the second and vice versa. Therefore,
other aspects were considered.

Despite the fact that the usage-pattern approach was very similar to the concepts require-
ment in documentation, the pseudo-signature approach was chosen. The rationale behind
that was the similarity to required functions from classes and consistency with the modeling
syntax (in a model clause).

Another advantage was the ease of creating archetypes. An archetype was a minimal class
which provided the required functions, operations and members. The archetypes were a part
of the proposal intended for checking the constrained templates’ definitions.

The code below illustrates the concept definition after the compromise:

concept Comparable<typename T> {
bool operator<(T, T);
}s

8.2 Constraining functions and classes

The teams allowed both methods of constraining the templates arguments.

template <Comparable T>

T mymin(T a, T b) {
return (a<b?a:b);

}

template <typename T>
where {Comparable<T>}

T mymin(T a, T b) {
return (a<b?a:b);

}

SWG21 is a ISO C++ committee, a group of experts making decisions about C++ language.

19

The first was shorter and suitable when a class had simple constraints. The latter one
could express more complicated requirements, even with multitype constraints. Additionally,
the logical operators &&, || and ! could be used inside the where clause.

8.3 Explicit and implicit modeling

The choice between explicit and implicit modeling proved to be a problematic issue.
Explicit modeling was solving the mismatch issue (see , on the other hand, it increased
complexity of simple programs - they would need a lot of modeling statements which would
make it more obfuscated. The solution was to divide concepts into two categories: default
concepts (explicitly modeled) and auto-concepts (implicitly modeled).

The model keyword was also changed into concept_map to decrease conflicts in existing
codes.

Explicit modeling

concept Comparable<typename T> {
bool operator<(T, T);
}s

struct X {
bool operator<(X) { return true; }

}s

concept_map Comparable<X> { };

Implicit modeling

auto concept Comparable<typename T> {
bool operator<(T, T);
}s

struct X {
bool operator<(X) { return true; }

}s

8.4 Axioms

Azioms appeared in the design. It was a first attempt to express properties of a type,
e.g., associativity of an operation or transitivity of a relation. They were not checked by the
compiler but they might have influence on optimizations - the compiler could use them and
substitute one expression by the other. A short example of an axiom is presented below.

concept Semigroup<typename Op, typename T> {
T operator () (Op, T, T);
axiom Associativity (Op op, T x, Ty, T z) {
} op(x, op(y, z)) = op(op(x, y), 2z);

20

6 ‘}7

¥)

Then any occurrence of op(x, op(y, z)) on types satisfying the Semigroup concept
could be replaced by a compiler with op(op(x, y), 2).

9 Simplification (2009)

In 2009 Bjarne Stroustrup wrote a paper [N2906] where he summarized worries of the
WG21 committee members. They were concerned that the concepts were to complicated to
an average C+-+ programmer. Stroustrup urged to simplify the design.

9.1 Explicit refinement

Bjarne Stroustrup recommended to remove explicit concepts and to introduce explicit
refinement into implicit modeling instead.

concept ForwardIterator<typename Iter >
explicit Inputlterator<Iter> { /x ... %/ };

The syntax above expressed that despite the fact the type T satisfied the more specific
concept (ForwardIterator), T could not be generally treated as ForwardIterator. That
allowed to create a hierarchy of auto-concepts and to turn off the automatic match for specific
concepts in the hierarchy. The explicit refinement was another solution for mismatch problem
(see [5.3.1)).

In order to not lose the optimizations for types which were actually ForwardIterator,
the following code was proposed.

concept_map ForwardIterator<MyForwardlterator> { };

Introducing the explicit refinement and decreased number of concept_maps as its result
were expected to make the concepts more available for an average programmer.

9.2 Voting

At Frankfurt meeting in July of 2009, a month after issuing |[N2906|, the voting took
place. Stroustrup gave 3 alternatives for the concepts:

1. issue the concepts with the current specification,
2. implement the fixes from [N2906] and issue the concepts in C++0x standard,

3. remove the concepts from C+-+0x.

The WG21 committee noticed drawbacks of the current design and the votes split between
the second and the third option. However, the majority chose safer way: removing the
concepts from the current standard. The committee members were anxious about the time
plan. C++0x standard was planned in the first decade of the new millennium but it was
already 2009 and fixing the concepts could delay the issue date more. The Stroustrup’s
fixes were not straightforward refinements too. Moreover, there were some worries about the
efficiency of the ConceptGCC - this implementation was slow. Finally, the committee decided
to postpone the concepts for the next standard. The members were disappointed but they
preferred to deliver a high-quality solution ([Str09; [Siel2]).

21

10 Concepts Lite (2013)

After an unsuccessful adoption of concepts into C+-+11 standard, radical steps were
taken. Not only the simplification of the design was desired but the path of the development
was changed. Being aware of the difficulty of introducing such a complex feature into the
language, Stroustrup and the WG21 committee split the concept design and focused on the
first part - template constraints also called Concepts Lite (|N3576; [N3580; [N3701]).

10.1 Syntax

template<typename T>
concept bool Comparable() {
return requires (T a, T b) {
{a < b} — bool;
b
}

template <Comparable T>

T mymin(T a, T b) {
return (a<b?a:b);

¥

A concept definition was changed. It was equivalent to constant expression function
template definition. The concept keyword had the same meaning as constexpr but with
additional compile-time checks, e.g., the function was supposed to return bool and to have
no functional parameters.

A new clause appeared. The requires clause might introduce a new variables and it
checked if the statements inside its body compiled and returned values which could be con-
verted to the expected types. In the example above: if the comparison with operator < was
implemented and if it returned a boolean-convertible value. If the check was successful then
the requires clause returned true, otherwise false.

10.2 Caller-site checking

The approach was called “lite” becuase it no longer verified the template definition. For
instance, a template function could require a type satisfying the concept C but inside the
definition it might use a syntax not allowed by C. It was a step back in the design but
made concepts much easier to implement and therefore, more likely to appear sooner in the
standard.

template<typename T>
concept bool Comparable() {
return requires (T a, T b) {
{a < b} — bool;
¥
}

template <Comparable T>
T mymin(T a, T b) {
return (a<b?a:b);

22

}

template <Comparable T>
T mymax(T a, T b) {

return (a>b7a:b); //not provided by Comparable
}

struct X {
bool operator <(X)
bool operator>(X)

{ return true; }
{ return false; }
b

struct Y {
bool operator<(Y) { return true; }

}s

struct Z {
bool operator>(Z) { return false; }

}s

int main() {
X x1, x2;
mymin(x1, x2);
mymax(x1, x2);
Y yl, y2;
mymin(yl, y2);
//mymax(yl, y2); //error from inside the function
Z zl1, z2;
//mymin(zl, z2); //error: constraint not satisfied
//mymax(zl, z2); //error: constraint not satisfied

10.3 Additional features

The Concepts Lite proposal included additional features.

10.3.1 Concept-based overloading

The concept-based overloading was present in the design.

template<RandomAccesslterator Iter>
void advance(Iter iter, int n) { /« O(1) algorithm =/ }

template<Iterator Iter>
void advance(Iter iter, int n) { /% O(n) algorithm %/ }

int main() {
std:: list<int> 1 {1,2,3,4};
std ::vector<int> v {1,2,3,4};

23

auto lit = l.begin();

auto vit = v.begin();

advance (lit , 2); // uses advance() with Iterator
advance(vit , 2); // uses advance() with RandomAccesslterator

10.4 Logical operations in concepts

A concept definition could consist of logical operations.

template<typename T>

concept bool C1() { /+ ... %/ }
template<typename T>
concept bool C2() { /« ... %/ }

template <typename T>
concept bool C3() {
return (C1<T>() && C2<T>()) || requires(T a) { /+ ... =/};

]

10.4.1 Various syntax of constraining template arguments

To ease and increase speed of writing constrained functions and classes, the following
facilities were suggested.
Logical operations: Logical expressions on concepts could be a requirement.

template<typename T>

concept bool CI1() { /+ ... =/ }
template<typename T>
concept bool C2() { /+ ... %/ }

template <typename T>
requires CI<T>() && C2<T>()
void f(T);

Concepts as type introducers: A concept’s name could introduce the types it con-
strained. This was useful especially with multitype concepts.

template<typename T, typename S>
concept bool Convertible () {
return requires (T a) {
{a} — S;
};
}

Convertible{InT, OutT}

OutT convert (InT input) {
return input;

}

24

N

Terse notation: The following syntax introduces a concept and a template function.
The function sort is a template function because its argument’s type is a concept.

template<typename T>
concept bool Container() { /+ ... =/ }

void sort (Container& container);

Terse notation in lambdas functions: The same notation could be used in lambdas
functions.

template<typename T> concept bool Number() { /« ... =%/ }

[](Number n) { return 2xn + 3; }

10.5 Usage-patterns again

The approach was changed and the usage-patterns appeared instead of the pseudo-
signatures but it is not quite clear why. One of the advantages might be an ease of conversion
the requirements from the documentation of Standard Template Library. The statements
there had been written as usage examples so it was not difficult to convert text into that syn-
tax. Moreover, usage patterns were more abstract than pseudo-signatures (they were focused
on what was provided, not how) and they encouraged a programmer to write more general
code ([N3351]).

10.6 Implicit modeling again

Implicit modeling appeared again. However, there were no concept_maps. Thus, the
mismatch issue (see|5.3.1)) had another solution. The current one was based on iterator tags.
The std: :iterator_traits template could be specialized for any new iterator type. The

iterators from the STL had their own specializations provided. The trait had iterator_category

typedef. This typedef indicated the kind of the iterator. The base kinds were represented by
the following tags (which were just empty classes):

e std::input_iterator_tag,

e std::output_iterator_tag,

e std::forward_iterator_tag,

e std::bidirectional_iterator_tag,

e std::random_access_iterator_tag.

Having such tags, the concepts could require the proper tag to be defined beside the
other requirements. This solution was a workaround similar to the concept_maps but no new
syntax was necessary - the unconstrained templates and their specializations were sufficient.

25

11 Concepts TS (2015)

The aim of C++14 was to complete C+-+11 features and to fix existing bugs. There was
not enough time to introduce new facilities too. The committee decided to prepare a separate
document - Technical Specification ([SW14]).

The Technical Specification documents were invented to speed up the process of intro-
ducing new features into the language. Each Technical Specification could have individual
pace of development, have a separate group of contributors and finally it could be included
into the standard.

The work on the Concepts TS started in 2013 and in 2015 the final draft [N4553] was
published. A month after that the official ISO document [ISOTS| was issued. The concepts
introduced into GCC version 6.1 were based on this document (compilation required the
-fconcepts switch).

12 C++17 (2016)

It was expected that the Concepts Lite were included into C++17. Sutton in [P0248R0]
and Voutilainen in Why I want Concepts, and why I want them sooner rather than later
[PO225R0] argued for including them. On the other hand, there were votes against it, e.g.
Why I want Concepts, but why they should come later rather than sooner [P0240R0]. The
arguments of the opposite sides were as follows.

It was undeniable that constrained templates (even with restricted version without tem-
plate definition checking) offered what the programmers expected: better error messages,
documentation, notation and overloading. Some experiments were carried in various projects
and the concepts passed them. Only a few issues reminded. Also presentations in academic
environment gave positive feedback. Moreover, the programmers had been waiting for the
concepts so long and the lack of the concepts could lead to development of various independent
libraries for concepts-like techniques.

The arguments against included the lack of conceptualized standard library. It was diffi-
cult to write high-quality concepts without base concepts in the library. Even experts from
team responsible for new STL had problems with creating reliable hierarchy of concepts.
Moreover, Concepts Lite were to be the first part of the whole concepts idea and the second
part could require significant changes in the design of the first one. In addition ([Honl6]) it
was short time since the [ISOTS| was published, there was only one implementation of the
concepts in GCC written by one of the authors of the Indiana Proposal and there were still
some problems with the syntax.

Finally, at the meeting in Jacksonville in 2016, the committee decided to postpone the
concepts introduction again. The concepts issue is still open.

13 Conclusions

In this paper I presented the history of the concepts, the decisions which were made and
the rationale behind them. Based on these considerations, several conclusions can be drawn.

13.1 Project development

The main idea of the concepts was very clear and easy: an ability to constrain template
arguments was desired. However, while the idea was being developed, various issues occurred.

26

Even after splitting into parts and focusing on the Concepts Lite, there were still problems.
This shows that designers have to be always aware of possible difficulties in their projects.

Another aspect is the responsibility for the design. It is unwise to create or modify the
design without considering the effects. On the other hand, it is very hard to foresee all the
consequences of the decisions. The risk depend also on a project category. In a small project
it is easier to accept the cost of a wrong decision. In a complex and one, introducing improper
idea may lead to irreversible consequences. The concepts’ designers did their best to avoid
such catastrophic decisions.

The variety of the points of view is also important. On each step of the development of the
concepts there was at least two alternatives. This broadened the perspective and improved
the proposals (e.g., Texas and Indiana Proposals created the compromised proposal). The
lack of diversity was strong reason to postpone the concepts inclusion into standard (e.g.,
only GCC implemented the concepts, see . Thus, it is valuable to confront and discuss
different approaches and to extensively test the solutions.

13.2 Future of the concepts

In my opinion Concepts Lite will be a part of the C+420 standard. A long time of
planning and the number of examined scenarios imply high quality of the design.

A conflict between usage-patterns and pseudo-signatures (which was one of the objections)
has been discussed very deeply by the WG21 committee. Advantages and disadvantages of
both approaches are known very well.

The implementation has existed since April of 2016 and was tested in various environ-
ments. Microsoft and Clang team have also begun work on Concepts Lite in their compilers.

Additionally, the evolution of the Concepts Technical Specification has not been stopped
and there are new voices that concepts are ready ([PO606RO]).

However, in my opinion, the full concepts will not be available soon. The issue of checking
constrained template definition remains unresolved; integration with Concepts Lite can cause
further problems and additional yet undiscovered issues can delay the final release of concepts.
Nevertheless, I consider the concepts an important feature and hope they will be available
rather sooner than later.

27

28

References

[Gre+06]

[Hon16]

ISOTS]

[N1510]
[N1522]

[N1758]
[N1782]

[N1848]
[N1849]

[N2042]
[N2081]

[N2906]
[N3351]
[N3576]
[N3580]
IN3701]
[N4553]
[N4641]

[P0225R0]

Douglas Gregor et al. “Concepts: Linguistic Support for Generic Programming
in C++47. In: Proceedings of the 21st Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems, Languages, and Applications. OOPSLA.
2006.

Tom Honermann. Why Concepts didn’t make C++17. Tom Honermann’s blog.
2016. URL: http://honermann.net/blog/2016/03/06/why-concepts-didnt-
make-cxx17/.

Information technology — Programming languages — C++ Extensions for con-
cepts. Standard ISO/IEC TS 19217:2015. International Organization for Stan-
dardization, 2015.

Bjarne Stroustrup. Concept checking — A more abstract complement to type
checking. Tech. rep. N1510. WG21, 2003.

Bjarne Stroustrup and Gabriel Dos Reis. Concepts — Design choices for template
argument checking. Tech. rep. N1522. WG21, 2003.

Jeremy Siek et al. Concepts for C++0z. Tech. rep. N1758. WG21, 2005.

Bjarne Stroustrup and Douglas Gregor. A concept design (Rev. 1). Tech. rep.
N1782. WG21, 2005.

Douglas Gregor and Jeremy Siek. Implementing Concepts. Tech. rep. N1848.
WG21, 2005.

Jeremy Siek et al. Concepts for C++0zx. Revision 1. Tech. rep. N1849. WG21,
2005.

Douglas Gregor and Bjarne Stroustrup. Concepts. Tech. rep. N2042. WG21, 2006.

Douglas Gregor and Bjarne Stroustrup. Concepts (Revision 1). Tech. rep. N2081.
WGQ21, 2006.

Bjarne Stroustrup. Simplifying the use of concepts. Tech. rep. N2906. WG21,
2009.

Bjarne Stroustrup and Andrew Sutton. A Concept Design for the STL. Tech.
rep. N3351. WG21, 2012.

Herb Sutter. SG8 Concepts Teleconference Minutes. Tech. rep. N3576. WG21,
2013.

Andrew Sutton, Bjarne Stroustrup, and Gabriel Dos Reis. Concepts Lite: Con-
straining Templates with Predicates. Tech. rep. N3580. WG21, 2013.

Andrew Sutton, Bjarne Stroustrup, and Gabriel Dos Reis. Concepts Lite. Tech.
rep. N3701. WG21, 2013.

Andrew Sutton. Working Draft, C++ extensions for Concepts. Tech. rep. N4553.
WG21, 2015.

Andrew Sutton. Working Draft, C++ extensions for Concepts. Tech. rep. N4641.
WG21, 2017.

Ville Voutilainen. Why I want Concepts, and why I want them sooner rather than
later. Tech. rep. P0225R0. WG21, 2016.

29

http://honermann.net/blog/2016/03/06/why-concepts-didnt-make-cxx17/
http://honermann.net/blog/2016/03/06/why-concepts-didnt-make-cxx17/

[PO240R0)]

[PO248R0]
[POGOGRO]
[Sie10]

[Siel2]

[Str09]

[Stro4]
[SW14]

Matt Calabrese. Why I want Concepts, but why they should come later rather
than sooner. Tech. rep. P0240R0. WG21, 2016.

Andrew Sutton. Concepts in C++17. Tech. rep. P0248R0. WG21, 2016.
Gabriel Dos Reis. Concepts Are Ready. Tech. rep. PO606R0. WG21, 2017.

Jeremy Siek. Concepts in C++. Presentation from Spring School on Generic
and Indexed Programming. 2010. URL: http://ecee.colorado.edu/~siek/
concepts—-ssgip2010.pdf.

Jeremy Siek. “The C+40x “Concepts” Effort”. In: Generic and Indexed Pro-
gramming: International Spring School, SSGIP 2010, Ozford, UK, March 22-26,
2010, Revised Lectures. Springer Berlin Heidelberg, 2012.

Bjarne Stroustrup. “The C+40x “Remove Concepts” Decision”. In: Dr. Dobb’s
Journal (2009). URL: http : //www . drdobbs . com/ cpp / the - cOx - remove -
concepts—-decision/218600111.

Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, 1994.

Bjarne Stroustrup and William Wong. “Bjarne Stroustrup Talks About C++14".
In: Electronic Design (2014). URL: http://www.electronicdesign.com/dev-
tools/bjarne-stroustrup-talks-about-c14.

30

http://ecee.colorado.edu/~siek/concepts-ssgip2010.pdf
http://ecee.colorado.edu/~siek/concepts-ssgip2010.pdf
http://www.drdobbs.com/cpp/the-c0x-remove-concepts-decision/218600111
http://www.drdobbs.com/cpp/the-c0x-remove-concepts-decision/218600111
http://www.electronicdesign.com/dev-tools/bjarne-stroustrup-talks-about-c14
http://www.electronicdesign.com/dev-tools/bjarne-stroustrup-talks-about-c14

	What are the concepts?
	The very beginning (1994)
	Constraints by inheritance
	Constraints by usage

	Texas Proposal (2003)
	The base-class approach
	The function-match approach
	The usage-pattern approach
	Additional features
	Implicit modeling

	The pseudo-signature approach

	Concepts' design aims (2003)
	Indiana Proposal (2005)
	Syntax
	Additional features
	Explicit modeling
	Input and Forward Iterators issue

	Revised Texas Proposal (2005)
	Negative assertions

	ConceptGCC and Revised Indiana Proposal (2005)
	Compromise (2006)
	Concept definition
	Constraining functions and classes
	Explicit and implicit modeling
	Axioms

	Simplification (2009)
	Explicit refinement
	Voting

	Concepts Lite (2013)
	Syntax
	Caller-site checking
	Additional features
	Concept-based overloading

	Logical operations in concepts
	Various syntax of constraining template arguments

	Usage-patterns again
	Implicit modeling again

	Concepts TS (2015)
	C++17 (2016)
	Conclusions
	Project development
	Future of the concepts

