Theory of Impartial Games

Jakub Cisło

Jagiellonian University

jakub@cislo.net.pl

Based on http://web.mit.edu/sp.268/www/nim.pdf

February 9, 2017

Jakub Cisło (UJ)

Theory of Impartial Games

Overview

Definition

• Examples

Nim

- Rules
- Example of play
- Types of positions
- Properties of positions

3 Nimber

- XOR
- Nimber for Nim
- Theorem
- Example

4 Summary

Definition

Jakub Cisło (UJ)

3

• two players

- two players
- moving alternately

-

- two players
- moving alternately
- finite set of states

э

Image: Image:

3

- two players
- moving alternately
- finite set of states
- finite play

- ∢ ⊢⊒ →

3

- two players
- moving alternately
- finite set of states
- finite play
- player who can't make a move loses

- two players
- moving alternately
- finite set of states
- finite play
- player who can't make a move loses
- possible moves are the same for each player

- two players
- moving alternately
- finite set of states
- finite play
- player who can't make a move loses
- possible moves are the same for each player

IMPARTIAL GAME

Examples

Jakub Cisło (UJ)

3

ም.

• Nim

- ∢ ⊢⊒ →

3

• Nim

• Subtraction game

< m

- Nim
- Subtraction game

Impartial games are not

A 🖓 h

- Nim
- Subtraction game

Impartial games are not

checkers

A 🖓 h

- Nim
- Subtraction game

Impartial games are not

- checkers
- chess

3

- Nim
- Subtraction game

Impartial games are not

- checkers
- chess
- GO

Image: A math and A math and

3

Jakub Cisło (UJ)

æ

・ロト ・聞ト ・ヨト ・ヨト

• piles of stones

3

・ロト ・回ト ・ヨト

- piles of stones
- select one pile

- piles of stones
- select one pile
- decrease amount of stones in chosen pile

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 6 / 13

3

Image: A math and A

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 6 / 13

3

Image: A matrix and a matrix

3

イロト イ団ト イヨト イヨト

00000 •000

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 6 / 13

< E

・ロト ・日下 ・ 日下

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 6 / 13

< E

・ロト ・日下 ・ 日下

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 6 / 13

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 6 / 13

イロト イ団ト イヨト イヨト

0 0 0

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 6 / 13

イロト イ団ト イヨト イヨト

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 6 / 13

3

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 6 / 13

æ

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 6 / 13

3

• 0

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 6 / 13

3

Ο

3

●

æ

・ロト ・聞ト ・ヨト ・ヨト

Jakub Cisło (UJ)

3

・ロト ・聞ト ・ヨト ・ヨト

Types of positions

Jakub Cisło (UJ)

3

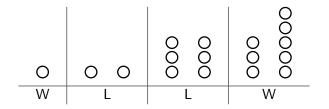
・ロト ・日下・ ・日下

æ

State in which current player can win regardless of opponent's moves.

State in which current player can win regardless of opponent's moves.

Losing position


State in which current player can't win if the opponent plays optimally.

State in which current player can win regardless of opponent's moves.

Losing position

State in which current player can't win if the opponent plays optimally.

Examples:

Properties of positions

Jakub Cisło (UJ)

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

leads to at least one losing position

leads to at least one losing position

Losing position

leads to winning positions only

Jakub Cisło (UJ)

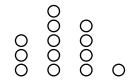
Theory of Impartial Games

臣

・ロト ・四ト ・ヨト ・ヨト

Ope	Operation array											
\oplus	0	1										
0	0	1										
1	1	0										

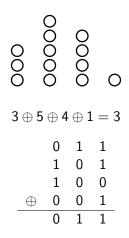
・ロト ・四ト ・ヨト ・ヨト


Ope	ratio	on a	rray					
\oplus	0	1						
0	0	1						
1	1	0						

Example:

$$\begin{array}{cccc}
6 \oplus 3 = 5 \\
 & 1 & 1 & 0 \\
 \hline
\oplus & 0 & 1 & 1 \\
\hline
 & 1 & 0 & 1
\end{array}$$

æ


・ロト ・聞ト ・ヨト ・ヨト

∃ ► < ∃ ►</p>

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

Jakub Cisło (UJ)

æ

- ∢ ≣ →

.⊒ . ►

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem

Jakub Cisło (UJ)

3

Theorem

Position is winning if and only if its nimber is non-zero.

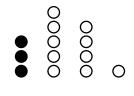
Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 11 / 13

æ

< □ > < ---->


 $3 \oplus 5 \oplus 4 \oplus 1 = 3$

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 12 / 13

3

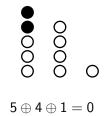
 $\mathbf{3}\oplus\mathbf{5}\oplus\mathbf{4}\oplus\mathbf{1}=\mathbf{3}$

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 12 / 1

イロト イヨト イヨト イヨト


æ

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 12 / 1

3

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 12 / 1

æ

O O O O O O $3 \oplus 4 \oplus 1 = 6$

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 12 / 1

3

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 12 / 1

3

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 12 / 1

3

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 12 / 1

3

O O O O $2 \oplus 2 \oplus 1 = 1$

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 12 / 1

3

O O O O $2 \oplus 2 \oplus 1 = 1$

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 12 / 1

3

$\begin{array}{c} O \\ O \\ 2 \oplus 2 = 0 \end{array}$

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 12 / 1

3

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 12 / 1

3

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017

3

•

2 = 2

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 12 /

3

First player has won!

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 12 / 13

æ

Image: A matrix

Summary

Jakub Cisło (UJ)

3

Thanks for attention

Jakub Cisło (UJ)

Theory of Impartial Games

February 9, 2017 13 / 13

< A